There are broadly seven ways in which a substance interacts with the electromagnetic spectrum: – Absorption, Reflection, Refraction, Diffraction, Photoelectric Effect, Scattering, and Radiation. There are two types of radiations:-

  1. Due to temperature
  2. Due to a chemical reaction (includes nuclear radiation)

Radiation due to a chemical reaction

In a candle, the chemical reaction between the wax vapour and oxygen is exothermic, and releases energy in the form of heat and light. A nuclear chemical reaction will release nuclear radiation. Pretty basic analogy.

Radiation due to Temperature

An iron nail when heated to 3000 K glows. The only reason that it does glow is because of the temperature. Matter exhibits this property, that at every possible temperature above 0 on the Kelvin scale, it glows. All types of matter do this, and at all temperatures. The propane gas that is heating the nickel itself glows, but its glow is hidden behind the light radiation from the chemical reaction. (Reference) Which brings us to the second point: –
The glow from temperature is much fainter than a glow from chemical reactions. 

This movement is not to be confused with electron movement in orbitals or protons rotating about their own axes. This is the movement of the atom or the molecule as a whole body.

How does matter produce radiation just because of temperature?

Vibrational Quantum States. The only region in the spectrum that associates with heat is the IR region. Turns out, a photon from the infrared region has an energy on the order of the energy of vibrational transitions in molecules. The reason why IR light is produced and associated with heat is that you are seeing molecules go from one vibrational quantum state to a lower vibrational quantum state by giving off a photon of appropriate energy (in the IR region). (Reference)

When an object is above 0 K, it radiates infrared waves. As the temperature crosses 1000 K, the radiations become visible as their wavelengths shorten, while intensity increases several fold. Higher the temperature, higher is its vibrational state, higher the energy radiated.

For an object with a temperature T (in Kelvin) and a surface area A, the energy radiated (Q) in a time t is given by the Stefan-Boltzmann law of radiation:

The constant e is known as the emissivity, and it’s a measure of the fraction of incident radiation energy is absorbed and radiated by the object. This depends to a large extent on how shiny it is. If an object reflects a lot of energy, it will absorb (and radiate) very little; if it reflects very little energy, it will absorb and radiate quite efficiently. Black objects, for example, generally absorb radiation very well, and would have emissivities close to 1. This is the largest possible value for the emissivity, and an object with e = 1 is called a perfect blackbody. (Reference)

Difference between Microwaves and Ovens

Both ovens and microwaves use EM waves to heat our food, the difference is in the type of EM waves they use.

An simple oven’s working is simple too. An oven heats the air inside the vessel, increasing the temperature of and around all of your food. Your food absorbs the heat (i.e. IR radiation) from the air around and inside it, and in turn itself starts to radiate infrared waves (i.e. becomes hot) and is cooked.

A microwave oven uses radio waves with an average wavelength of a few centimeters. Radio waves, unlike visible light, are not absorbed or reflected by the food. The only thing they do is create a rapidly alternating electric and magnetic field around our food molecules. Water acts as a dipole and loses energy in the form of heat. This is because of dielectric loss, and works especially well on water because it has a high dielectric constant. The exact frequency used is slightly away from the frequency at which maximum dielectric loss occurs in water to ensure that the microwaves are not all absorbed by the first layer of water they encounter, therefore allowing more even heating of the food. (Reference)

What is Dielectric Loss? Imagine stirring a cup clockwise and then suddenly stir it anti-clockwise, and then clockwise again and so on. The energy lost in switching the polarity is called dielectric loss. (Reference)

But if E=hv, and visible light has higher frequency than microwaves, why don’t we use visible light to heat up food?

  1. It takes more time to heat up the air, and then heat up the food.
  2. Energy isn’t just dependent on frequency, it also depends on intensity.


How TV signals work

The light (i.e. radio frequency) causes electrons in the TV aerial to oscillate and this oscillation generates an oscillating electric current. The voltage this generates is amplified by your TV. At the TV transmitter the same happens in reverse: an oscillating voltage is applied to the TV transmitter, the electrons oscillate in response and the oscillation generates an electromagnetic wave. (Reference) (EM waves can only be generated via atoms only)

A microwave works in a similar way, the only difference being that in the microwave engineers try to maximize dielectric heat loss, while in a T.V. signal receiver, they’ll try to minimize it.

Does everything absorb and emit infrared all the time?

Different objects have different absorption rates for different lights. Most plastics allow IR to pass through. Glass will block low frequency IR (red hot), but allow the passage of high frequency (white hot) IR. Hence, the heat of the sun will easily pass into a greenhouse, but once this energy is converted into low frequency heat by the objects within that absorb it, then the resulting low frequency heat is trapped. Hence, the Greenhouse Effect. (Reference)

You should also read: –

How NMRI Works
How X-Ray Works

EM Radiation and Matter
Liked it? Take a second to support Spherical Hysterical on Patreon!

Leave a Reply